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Abstract: The relations among various languages and models for distributed computation and
various possible definitions of faimess are considered. Natural semantic criteria are presented
which an acceptable notion of fairness should satisfy. These are then used to demonstrate differ-
ences among the basic models, the added power of the fairness notion, and the sensitivity of the
fairness notion to irrelevant semantic interleavings of independent operations. These results are
used to show that from the considerable variety of commonly used possibilities, only strong pro-
cess fairness is appropriate for CSP if these criteria are adopted. We also show that under these
criteria, none of the commonly used notions of fairness are fully acceptable for a model with an
n-way synchronization mechanism. The notion of fairness most often mentioned for Ada is
shown to be fully acceptable. For a model with nonblocking send operations, some variants of
common fairess definitions are appraised, and two are shown to satisfy the suggested criteria.
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1. Introduction

Fairness is an important concept which naturally arises in the study of nondeterministic sys-
tems, in particular when dealing with concurrent systems. A very general formulation is a state-
ment of the form: if a certain choice is possible sufficiently often, then it is sufficiently often
taken. Depending on the definitions of a ‘‘choice’’, ‘‘possible’’, and ‘‘sufficiently often’’, dif-
ferent notions of fairness arise. A variety of these fairness notions have been introduced in the
literature and studied both from a proof theoretic and a semantic point of view. Semantics is
usually introduced by means of a computational model which defines legal computations. A
two —leveled approach is most often taken in which first the legal computations are described,
and then a fairness notion is used to exclude some additional computations which otherwise
would be legal. An overview, examples, and further references may be found in [Fr].

For nondeterministic programs some of the fairness notions include weak fairness (also
called justice), strong fairness, equifairness, and extreme fairness. For CSP [H] and other models
for distributed computing, at least six reasonable variants have been defined and investigated.
This wide variety of possibilities leads to a confusing situation: selection of a particular defini-
tion of fairness for any particular model or language relies almost exclusively on subjective,
implicit criteria.

In this paper, we suggest three simple semantic criteria which can aid in determining which
notions are appropriate for which computational model. The criteria we propose are termed
feasibility, equivalence robustness, and liveness enhancement. Below we informally explain the
criteria and the results linking the criteria and the models. In subsequent sections the formal
definitions are given, and the theorems and proofs which lead to these results are presented.

Feasibility:

As noted above, any definition of fairness excludes some of the executions (the ‘‘unfair" ones)
which otherwise would be legal executions of a program according to a semantics of the compu-
tational model. A necessary requirement of any definition of fairness for a computational model
is to have some legal computation remain after this exclusion, for every possible program and
initial state. That is, for every legal program and initial state some (finite or infinite) fair compu-
tation does exist. This restriction is closely related to the idea of implementing fairness by
means of schedulers. Without it, no scheduler--which must produce one of the fair
computations-- could correctly treat the fairness. Moreover, since any reasonable scheduler can-
not ‘predict’ the possible continuations at each point of the computation, it should be possible to
extend every partial computation to a fair one. This is the proposed feasibility criterion, and it
subsumes the above necessary requirement.



As a simple example of an unfeasible definition of fairness for guarded commands (GC)
[D], consider the following fairness definition:
all choices (referred to as directions) which are infinitely often possible must eventually be
chosen equally often.

In Figure 1 a nonterminating program P is shown, for which there is no computation
sequence satisfying the above definition, even though both directions are infinitely often possi-
ble. Thus no scheduler can be devised, and the fairness notion is not feasible for that model. (In
fact, feasible definitions of such a fairness notion must incorporate the set of choices which are
jointly possible at each stage, as in [GFK1].)

Equivalence Robustness:

For concurrent programs, the computational model used induces a dependency relation among
actions. For example, an input action of a receiving process depends on a corresponding output
action of a sending process. The computations of asynchronous, distributed systems are often
modeled by interleaving the (atomic) actions of their component processes. However, it is clear
that the order of execution of independent actions in such an interleaving is arbitrary. Thus two
execution sequences which are identical up to the order of two independent actions should be
equivalent. This leads to the second criterion: a definition of fairness is equivalence robust for a
computational model if it respects the equivalence induced by that model. That is, for two infin-
ite sequences which differ by a possibly infinite number of interchanges of independent actions
(i.e., equivalent sequences), either both are fair according to the given definition, or both are
unfair. If this criterion is not satisfied, then fairness depends on the particular ratio of processor
speeds or on the location of the observer, which is undesirable.

Liveness Enhancement:

All distributed models assume a fundamental liveness property that an action will eventually be
executed in some process if the system is not deadlocked. Any additional fairness requirement
complicates the scheduling and may cause difficulties in defining a precise semantics or proving

Pux=1,*[true —» x:=x+1
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correctness. Thus adding an additional liveness requirement of some sort of fairness is only jus-
tified if some benefit will accrue. That is, there must be some program which has some liveness
property which it would not have without the additional requirement. This criterion is termed
liveness enhancement in order to emphasize that additional liveness properties will hold for
some programs. As shown in the sequel, this also depends on the particular model being con-
sidered, and is sensitive to fine details of the model. Some faimess assumptions cannot force a
communication to occur in a model if it did not have to occur under the basic liveness property.
These assumptions are not liveness enhancing for that model.

It is sufficient to consider here the impact of fairness assumptions on termination only. This
is true because such assumptions are known not to affect partial correctness or, more generally,
safety properties, and other liveness properties can be reduced to termination for derived pro-
grams (see [GFMdR]).

Plan of the paper

In the sequel, we appraise several fairness definitions and computational models under the
criteria suggested above. These are only examples of the application of our approach. Readers
are invited to apply these criteria, or any variants and additions they prefer, to their favorite fair-
ness definitions and computational models.

In the next section we introduce the formal definitions of the semantics and of the fairness
criteria. Then in Section 3 the properties of six fairness notions for CSP are analyzed in detail.
We conclude that only one of these common notions--Strong Process Fairness-- satisfies all
three criteria. The joint action of CSP involves synchronous communication between a pair of
processes. In Section 4, we study the case of N-way communication (for arbitrary N > 2),1i.e., a
joint action with synchronous communication among N processes. We show that none of the six
common fairness definitions we consider satisfy all of the criteria. The difference between the
2-way and N-way cases lies in a greater possibility of ‘‘conspiracies’” when N >2. That is, one
group of processes may ensure that particular actions involving other processes are insufficiently
often possible.

In Section 5 fairness for an abstraction of Ada is considered, while Section 6 defines and
appraises fairness notions for a message-passing model with a nonblocking send operation. The
Ada and the nonblocking send models have in common that the fairness notions relate to the
receipt of a message or activation of a rendezvous within a single process. As is shown, for this
reason all of the fairness notions considered will be equivalence robust for these models. In the
Conclusions, some implications of our results are considered regarding proof rules for termina-
tion under a fairness assumption.



2. Formal definitions

2.1 Computational models

The models of computation considered here are assumed to have some common structural
properties. By a distributed program we mean a fixed collection of processes. These processes
have disjoint states and perform atomic actions. The model attributes each action either to one
process, in which case we refer to it as a local action (of that process), or to two or more
processes, in which case we refer to it as a joint action (of those processes). A configuration is a
pair consisting of a global state and an atomic action to be taken.

Definition: A computation is a maximal sequence of configurations, where the action in a confi-
guration transforms the state of that configuration to the state of the immediately following con-
figuration.

We also assume that the state determines a predicate enabled over the possible actions which
may appear in a configuration, as defined below.

Definition:

i) An action is enabled in a configuration if it can serve as the next action executed (where
the exact definition is model dependent).

ii) A process is enabled in a configuration if some (possibly joint) action attributed to it is
enabled in the configuration.

iii) A process is ready for an action in a configuration if its local state is the projection of a
state in which the action is enabled and the action is attributed to that process.
The second component of a configuration is always one of the actions enabled in that configura-
tion and represents the one chosen to be executed at that point in the computation.

Similar approaches to defining semantics may be seen in [P] for CSP, and in [HLP] for a
fragment of Ada. However, it is also reasonable, and even attractive to consider a partial order
semantics (see for example [L1], [R], or [DM]) expressing only the essential causal relation-
ships among the atomic actions (both local and joint). In this paper we will assume that the
underlying partial orders are total over the local atomic actions of each individual process, so
that two local actions of the same process are ordered. Clearly, every such partial order induces
a dependency relation among actions, and a uniquely defined equivalence over interleaved com-
putations of those satisfying the same partial order with the same actions.

Definition: Two atomic actions are independent if they are not related by the partial order.
Definition: if & and p are interleaved computations, then © = p iff 7t can be obtained from p by
(possibly infinitely many) simultaneous transpositions of two independent atomic actions .

Thus we assume a combined semantics where both the collection of interleaved



computations and the equivalence relations defined by the underlying partial order are available.
A temporal logic assuming this kind of semantics is defined and investigated in [KP].

In this paper, three additional assumptions are made about the syntax of the programs stu-
died and the computational models considered:
(1) Noninstantaneous readiness : Every joint action is immediately followed by a configuration
with a state in which each participant process is not ready for any joint action. This means that
once a process executes a joint action it enters a local state in which none of the joint actions in
which it can participate is enabled. The next local action could, of course, be a (possibly impli-
cit) skip whose only effect is to make some joint action become a possible later choice.

This affects the definition of when a joint action is continuously enabled. The justification
for the noninstantaneous readiness assumption is that joint (and other) actions take time at the
implementation level, even though they are considered atomic on the program level. Thus if we
wish to equate ‘‘continuously’” with ‘‘uninterruptedly’’ (as we do), even the interruption caused
by executing one action can be enough to make other (joint) actions temporarily disabled. As
will be indicated in the proofs, this assumption influences the results we obtain regarding live-
ness enhancement. A more detailed examination of issues involved in deciding when a joint
action should be considered enabled may be found in [FK]. Some other work in this area
([KdR]) assumes that only states where joint actions are possible choices need be considered as
significant. In that case, it would be possible for a process which participates in a joint action A
to nevertheless be ‘‘continuously’’ ready to participate in some other joint action B .

The noninstantaneous readiness assumption may be enforced either by assuming that local
actions actually appear in the text after every joint action, or by positing a hidden local state and
local skip action after every joint action.

(2) Uniform choice : A choice between a local and a joint action is never possible. This assump-
tion is motivated by our desire to emphasize the influence of fairness assumptions on the execu-
tion of joint actions, and the fact that many fairness definitions do not relate at all to local
actions. This and the previous assumption together guarantee that the definitions of fairness
considered here are immune to additions of local actions, like skip, in processes. In the terminol-
ogy of [L2] we might say that these definitions are immune to stuttering , i.e., to repetitions of a
configuration in a computation. Again, this assumption is crucial to some of the results seen in
later sections.

(3) Minimal progress [OL]: Every process in a state with enabled local actions will eventually
execute some action. This minimal progress assumption is somewhat stronger than the funda-
mental liveness property mentioned in the introduction. According to this stronger assumption, a



process will not simply “‘stop executing’’ when it has local actions which may be chosen. In the
sequel, all computations are assumed to satisfy the minimal progress property.

Note that this property could be itself considered to be a fairness assumption, and indeed
has been in the literature. However, in [FdR] it is shown not to allow proving the termination of
additional programs beyond those which terminated under the fundamental liveness assumption
(that some atomic action is executed somewhere). In our terminology this means that minimal
progress is not liveness enhancing in relation to the fundamental liveness property. We have
chosen to “‘build-in’’ this assumption so that the focus of additional fairness definitions is on
joint actions (e.g., interprocess communication). This assumption is significant for results on
liveness enhancement, since the enhancement is relative to this minimal progress property.

2.2 Fairness and appraisal criteria

Now the possible definitions of fairness and the criteria for their appraisal may be
expressed in terms of the computational models.
Definition: Given a (distributed) program P, comp(P) is the set of interleaved computations
generated by P under the semantics of the model, assuming only the minimal progress property.

A fairness notion (or fairness definition) F is a rule for selecting, for any given program P,
a subset of computations F(P) ¢ comp(P) such that F(P) contains all finite computations in
comp(P).

Note the indirect dependence of F on the model of computation, since comp(P) itself
depends on the model. Actually, an arbitrary selection function would generally not be con-
sidered a fairness notion at all since the uniform predicate for deciding whether a computation is
fair or not involves the choices made during the computation. A fairness definition would be
expressed in terms of the predicates enabled, ready , and other predicates such as executed (true
of an action if it has been executed in the previous configuration). However, such restrictions
will not be imposed here formally, since in any case we do not intend to precisely characterize
all possible fairness definitions, but rather to provide criteria for appraising specific examples of
such definitions. Now we may state these criteria precisely.

A necessary condition for feasibility of F is that for all programs P, if comp(P) = @ , then
F(P) = Q. As already explained, feasibility should also prevent a scheduler from "painting itself

into a corner" with no possible continuation. Thus the definition is expanded to cover this diffi-
culty.

Definition: F is feasible iff for every program P every finite initial segment of an interleaved
computation in comp(P) can be extended to a computation in F(P).



Definition: F is equivalence robust iff for every program P and every two computations & and p
incomp(P), (w € F(P) An=p) = pe F(P).

Definition: F is liveness enhancing iff there is a program P such that comp(P) contains an infin-
ite computation, but all computations in F(P) are finite.

This definition means that P terminates under the assumption of F. Because of the possi-
ble reduction of liveness properties to termination of a derived program, this is sufficient to
express general liveness enhancement.

By a projection of a computation % on a process p, denoted by [x],, we mean the result of
deleting from = all actions in which p is not involved and restricting the states to variables used
only in p. Note that in general [], need not be a computation.

The following simple lemma will be useful in the sequel. It is a direct consequence of our
assumption about the totality of the local dependence relation within a process.

Lemma: (Projection Equality)

if T = p, then for each process p, [T], =[p], -

Note: The converse of this lemma was proved by L. Bougé (private communication) for CSP
programs. We do not need this stronger version here.

3. Results for CSP

In this section the results concerning the CSP model are stated. We consider the language
as defined in [H] except that
(i) nested parallelism 1is disallowed,
(ii) the distributed termination convention is not adopted,
(iil) output commands may appear in guards,
(iv) the three additional assumptions given in the previous section are also imposed.

The semantics we consider is that of interleaved computation sequences as defined in [P].
According to this semantics the control of a process is identified with the part of the process text
still to be executed. A configuration is then a vector of control points of the processes and a
usual global state. This view can easily be converted into the configuration defined in Section
2.1 because the action taken can be extracted from the information available in successive con-
trol vectors, as may the predicate enabled .

In order to satisfy the noninstantaneous readiness assumption, we assume that each i/o com-
mand or i/o guard is immediately followed by a local action (which as mentioned might be



skip). To ensure the uniform choice assumption we postulate that in alternative and repetitive
commands either all guards are boolean or all guards contain an i/o command. Finally, only
computations satisfying the minimal progress assumption are considered. In the continuation,
when the CSP model is referred to, all of the assumptions above are included.

In the context of CSP, it is reasonable to define fairness so as to guarantee that an action
will be taken by each process which satisfies some condition, or that each communication satis-
fying a condition will occur, or that one communication will occur from each group of commun-
ications between two processes which satisfy a condition. That is, the ‘‘choices’’ for fairness
could be among the processes, the pairs of processes which could communicate (i.e., the chan-
nels), or the individual communications.

Once it has been settled what is to be fair, the precise interpretation of ‘‘sufficiently often’’
must be determined. Two well-known possibilities for CSP are weak fairness, in which the
choice is possible continuously from some point on, or strong fairness, in which the choice is
possible infinitely often. Taking all of the combinations, six notions are obtained.

Strong Process (SP) fairness: an infinite computation is fair iff each process infinitely often
ready to execute some joint atomic actions will infinitely often do so.

Strong Channel (SCh) fairness: an infinite computation is fair iff each pair of processes infin-
itely often capable of communication with each other do infinitely often communicate with each
other (so that one of the possible communications between them is executed, possibly a different
one every time).

Strong Communication (SCo) fairness: an infinite computation is fair iff each pair of i/o com-
mands (i.e., each specific possibility of communication) which is infinitely often jointly enabled
is executed infinitely often .

The weak versions, WP, WCh, WCo, respectively, are obtained by substituting "continu-
ously from some point on" for the first occurrence of "infinitely often".
Furthermore, it is stipulated that all finite computations are fair w.r.t all fairness definitions.

The consequences of the following propositions are that although all six possibilities are
feasible, only Strong Process fairness is both equivalence robust and liveness enhancing for
CSP : under our assumptions, no type of Weak fairness is liveness enhancing, and Strong Com-
munication or Channel fairness are not equivalence robust. These results are summarized in
Table 1.

Proposition 1: The six notions of fairness defined above are all feasible for the CSP model.

Proof idea: For each faimess definition an explicit scheduler is exhibited and it is shown that any
prefix of a legal computation can be generated by the scheduler. Moreover, if a prefix of a com-
putation was generated by the scheduler, then the scheduler will generate a continuation which



feasible | equivalence robust | liveness enhancing
SP + + +
SCh + — +
SC + - +
WP + - -
WCh + + -
WC + + —

Table I: Summary of appraisal for CSP

satisfies the condition for being in D, i.e., a computation satisfying the fairess notion under con-
sideration. This idea has been used implicitly in [AO] and explicitly in [OA].

As an illustration of this technique, consider Strong Communication fairness. Given a CSP
program P, associate with each of the atomic actions of P a distinct variable, called a priority
variable. The scheduler can be viewed as a program executed in parallel to P, having access to
all variables in P for inspection. It can also determine the control locations of all processes in P .
The scheduler interacts with P by executing the program section SELECT seen in Figure 2,
which determines the next action in the computation of P. After the execution of the selected
action by P, the scheduler regains control, unless P has terminated or entered a deadlocked con-
figuration. All priority variables are initialized to arbitrary nonnegative integer values.

Versions of these schedulers could also be composed so that the conditions apply to super-
impose (in the sense seen in [BF] and [K]) the scheduler on the program P, and so that the result
would be a legal CSP program. Rather than using the shared variables in the schedulers
described above, each process in P and the scheduler would be modified so that the values of the
control locations and of the priority variables are sent as messages to the scheduler instead of

for each atomic action do
if it is enabled then decrement its priority variable by 1;
select for execution an enabled action with a minimal
value for its priority variable;
reset the priority variable of the selected action to
an arbitrary nonnegative integer

Figure 2: SELECT
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being read directly.

Because of the use of random assignments and possible nonuniqueness of the minimal
priority variable, the scheduler itself is nondeterministic. The following faithfulness theorem
holds, whose proof is a variant on abstract results in [OA].

Theorem: (Faithfulness)

1. Every computation of P generated by the scheduler is SCo fair.

2. Bvery SCo fair computation of P or any finite prefix of a computation can be generated by
the scheduler.

Proof idea:

1. Consider a computation of P which is generated by the scheduler, and a pair of i/o commands
which form a joint action. Each time this joint action is enabled in the sequence considered, its
priority variable is decremented by 1. One can prove (see [OA]) that given n actions each prior-
ity variable is invariantly at least —n+1. This guarantees that every joint action infinitely often
enabled is executed infinitely often.

Moreover, by the same argument, since local atomic actions also have associated priority
variables which are decremented, every process with enabled local actions will eventually be
activated so the minimal progress assumption will be met. The sequence generated by the
scheduler is thus Strong Communication fair.

2. Consider a SCo fair computation of P or a prefix of a computation. To show that it can be
generated by the scheduler, it is sufficient to define the appropriate values of the priority vari-
ables at the point where they are reset. We simply assign to each priority variable the number of
times the associated action is enabled before it is taken (if.at all). It is straightforward to see that
this choice of values is consistent with the choices made by the scheduler. In fact, each action
when taken will have its priority variable equal to zero. [J

The above theorem immediately implies that Strong Communication fairness is feasible.
For any finite prefix of a computation, by part 2 of the theorem it can be generated by the
scheduler. The scheduler will then continue to choose events for execution. If it reaches a point
at which no event can be chosen, this can only be because no event was enabled, and the same
sequence of events define an execution which terminates from comp(P), and thus is fair. Other-
wise the scheduler will generate an infinite computation, which is also fair due to part 1 of the
theorem. Thus every prefix of a computation has a fair extension, as required. Schedulers and
faithfulness theorems may be obtained for the other fairness definitions merely by modifying the
conditions for enabledness and for resetting the appropriate priority variables.



11

Proposition 2: Weak Communication, Weak Channel, and Strong Process fairness are
equivalence robust for the CSP model.

Proof idea: It is easiest to show that SP fairness is equivalence robust for CSP by considering
the unfair computations of an arbitrary program P. If &t is Strong Process unfair, then from some
point on there is a process P; which is infinitely often enabled for at least one joint action but no
joint action involving P; is ever executed. Thus P; is continuously ready for the communication,
since there are no alternative local actions which it could execute. Here the Uniform Choice
condition, i.e., the restriction to a model where local actions are not nondeterministic alterna-
tives to communications, is essential. Now consider any equivalent computation p. By the Pro-
jection Equality lemma, starting from some point in p, the process P; is here also continuously
ready for a joint action. Again, by the same lemma, there are infinitely many states in which the
possible partner of P; could have communicated with P;, so the communication is enabled. Thus
in this case also, p is SP unfair.

For the Weak Communication case, the assumption of being continuously enabled means
that in an unfair computation neither participant process in a continuously enabled joint com-
munication can do anything else. As before, this is also true in any equivalent computation
sequence. Thus it too will be unfair, establishing the equivalence robustness. The WCh fairness
is treated similarly.

Proposition 3: Strong Communication, Strong Channel, and Weak Process fairness are not
equivalence robust for the CSP model.

Proof: We show that Weak Process fairness is not equivalence robust by exhibiting two
equivalent interleaving computations for a program (Figure 3), a variant of the Dining Philoso-
phers, with five cyclically arranged processes, each able to communicate with its immediate
neighbors. Even though the two computations are equivalent, one is Weak Process fair while the
other is not. This occurs because in one computation the middle process (i.e., P, ) could com-
municate in every state with at least one of its neighbors, but does not, leading to an unfair com-
putation, while in the other, there are infinitely many states in which the middle process cannot
communicate or otherwise advance at all, because both partners are communicating elsewhere.
Thus in the second computation the middle process’ noncommunication does not violate the
weak fairness condition.

The first computation consists of an indefinite repetition of the following finite segment:
1) Py and P, communicate.
2) Py executes its local action.
3) P, executes its local action.
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P:[Poll - 11P4]
where

P;:: I;:=true; r; =false;
*[ P17l >
[; Ar; > eat[]1=(; Ar;) > skip]
0Piy?r; =
[; Ar; s eat[]=(; Ar;) > skip]
01;:P;_y'true — I;:=false
(1 r;:P; q1lrue — r;:=false

1.

Figure 3: A conspiring program

4) Py and P, communicate.
5) P4 executes its local action.

6) P 4 executes its local action.

This computation is clearly unfair to process P,. The second computation consists of the inde-
finite repetition of the finite segment in which the same events take place in the order 1), 4), 2),
3), 5), 6). Here, P, is not enabled after step 4), where all its partners "passed the arrow" and are
unavailable for communication. This computation is thus rendered Weak Process fair.

Similar examples may be constructed for SCh and SCo fairness. OJ

We have just shown that the Weak Process fairness condition can be satisfied vacuously in
some computations by preventing the enabledness of the process involved, by having other
processes (the possible partners for joint actions) execute other actions. However there exist
equivalent computations in which some joint action is always possible for the process, rendering
that computation unfair. For Weak Communication fairness this cannot occur because the only
way to have a communication be continuously enabled is if both of the participants do not exe-
cute any other actions. If the communication is not continuously enabled because a participant
did some other action, that action will also be performed in any equivalent computation.



13

In order to prove assertions about liveness enhancement, in a similar way to the approach in
[FdR] and [KdR], we first compare the fairness notions in terms of ‘“strength’’ in causing termi-
nation. However, the notions of fairness given there differ in that the channel level is replaced by
a level dealing with a mixture of joint and local actions, the assumptions introduced in Section
2.1 are not considered, and weak fairness is defined differently. Nevertheless, using arguments
similar to theirs, similar relations can be shown to hold. Below, A — B means that every CSP

program which terminates under the fairness assumption A also terminates under the assumption
B.

Theorem: (CSP-hierarchy) The relations below are the only ones which hold among the
notions of fairmess considered:

WP — SP
l l
WCh — SCh

\) 2
WCo — SCo

Proof (fragment): We show that WP — SP holds. Consider a CSP program P such that all of
its Weak Process fair computations are finite. Then all Strong Process Fair computations of the
same program are also finite, since every Strong Process Fair computation is also Weak Process
fair. Other implications are equally straightforward to establish.

In order to see that SP — WP does not hold, consider the program shown in Figure 4. In
every Strong Process Fair computation of the program, P eventually communicates with P,
and then termination is inevitable. However, the infinite computation in which P never com-
municates is Weak Process Fair since the communication with P, is (infinitely often) disabled
whenever P, communicates with P3. Note that again the Noninstantaneous Readiness assump-
tion is crucial, and in particular the fact that the skip on the right of the arrow is preceded by a
local state in which no joint action involving P, is enabled.

Other cases of ‘‘non-implications”’ are left to the reader. [l

Proposition 4: Strong Communication, Strong Channel, and Strong Process fairness are liveness
enhancing for the CSP model.

Proof: To show that Strong Process faimess enhances liveness for CSP, we refer again to the
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P[P lIP4lIP3],
where:
P q:: bq:=true;
*[ b Pyl0 — by:=false ]

Pyt by=true;
*¥[bq; P1?x — by=false Tby; P3?x — skip |;
P30

Py by=true;
*[bs; Pol0 — skip Obs; Py?y — byi=false ]

Figure 4. A program which terminates for Strong Process fairness.

program in Figure 4. In that program, two processes are engaged in an indefinite "chattering",
terminated only by the intervention of a third process, which is necessarily activated if SP fair-
ness is assumed. The program does not terminate without a fairness assumption. SCh and SCo
are then also liveness enhancing for CSP due to the hierarchy theorem. OJ

Proposition 5: Weak Communication, Weak Channel, and Weak Process fairness are not live-
ness enhancing for the CSP model.

Proof: We show that Weak Process fairness does not enhance liveness for CSP . For this task we
need to demonstrate that for every program P, if comp(P) contains any infinite interleaved com-
putation 7, then comp(P) also contains an infinite WP fair computation. Thus the WP fairness
assumption does not cause termination of additional programs. Obviously, if 7t is WP fair, we
are done. Otherwise, let A be the set of processes which are activated in 7 only finitely often.

Now a new computation p will be constructed from n. The idea is to construct p so that the
processes which were previously the cause of the unfairness will execute fairly, without affect-
ing the processes which actively executed operations from some point on in the original infinite
computation . The construction will succeed because this can be done without forcing those
active processes in T to participate in any new joint actions. The computation p will be identical
to T up to the point where all the processes in A have executed all of their actions. Then, starting
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at that point, for each configuration of 7, a maximal subset of A with enabled actions not involv-
ing a process from outside A is identified. Configurations resulting from executing an action by
each of those processes are then inserted, followed by the configuration resulting from executing
the next action from . Note that the part of the state involving the next action executed in 7 is
not affected by the additions, so that the (modified) configurations can still include the original
sequence of actions from 7. The resulting computation can still be WP unfair as some process
P from A can, from some point onwards, continuously be ready to communicate only with
processes not in A. To handle this situation we first introduce a number of notions.

Given a computation and a collection B of processes, call a process P B-enabled if, from
some point onward, it can continuously communicate with a process in B. By a chunk of a com-
putation we mean a fragment consisting of an execution of a sequence of local actions belonging
to a pair of processes, together with a communication between these two processes. A process is
mute in a configuration ¢ in a computation if it does not participate in any communication after
c. A state is good (in some computation) if it either is an initial state of a chunk, or it results
from an action in a mute process.

Lemma: (Disabling)

Consider a computation p in which all processes in a collection B are infinitely often activated.
There exists an equivalent computation G, in which no process is B-enabled.

Proof: For each process in turn defer its local actions in p maximally. In such a way, an
equivalent computation ¢ is obtained, which consists of a sequence of chunks, possibly inter-
leaved with actions from mute processes. This computation has infinitely many good states.
Consider any good state in which each process from B was activated at least once. In such a
state, the control in each process in B is either just after the communication belonging to its most
recently executed chunk, or just after a local action in case it is mute. In both cases (by the
Noninstantaneous Readiness condition and by the definition of a mute process) none of the
processes in B can communicate in the considered state. This establishes the claim. [J

The above lemma concludes the proof that Weak Process faimess is not liveness enhanc-
ing, since B can be chosen to be the processes not in A. Similar but simpler reasoning shows that
Weak Channel fairness and Weak Communication fairness are also not liveness enhancing. [

As a consequence of Propositions 4 and 5, the classes of terminating programs for all three
weak levels coincide, in contrast to the proper inclusion shown in [KdR]. The difference seems
to be due to the fact that their notion of "Weak" still involves an element of "infinitely often”
enabled. Ours stresses that "continuously" enabled really means that nothing else is done by the
process involved.
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4. Results for N-way Communication

An N-way communication (considered in [BK-S1], [RS] or [Fo)) is a joint action executed
simultaneously by a number of processes (possibly more than two), each of which must be ready
in order for the action to be enabled. An attempt to participate in a joint action delays a process
until all other parties are ready for that action. After the communication, a local action takes
place in each participating process, guaranteeing the Noninstantaneous Readiness assumption.
The Uniform Choice and Minimal Progress properties are again assumed.

Thus, we consider a language with a structure similar to CSP. Within each process, the
guards constitute a reference to a joint action, possibly preceded with a local boolean condition.
The guarded statement is a multiple assignment, specifying the local change of state in each par-
ticipating process.

The definitions of fairness we consider are over the individual processes, over the N-way
communications, and additionally (as a generalization of channel faimess from CSP) over the
collection of joint actions possible among a group of participating processes. The definitions are:
Strong Group (SG) fairness: an infinite computation is fair iff each set of processes infinitely
often capable of communication will infinitely often communicate.

Weak Group (WG) fairness is defined analogously. A group of processes is called enabled if
there is some joint action which is enabled with exactly that group of processes as participants.

The results for N-way communication which are implied by the propositions given below, are
summarized in Table II. Note that the results are similar to the CSP case except for the

equivalence robustness of Strong Process fairness.

The following theorem has been (essentially) established in [BK-S2].

feasible | equivalence robust | liveness enhancing
SP + - +
SG + - +
SC + - +
WP + - -
WG + + : -
WC + + —

Table II: Summary of appraisal for N-way communication
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Theorem: (N-way hierarchy) The implications of the CSP hierarchy theorem hold for the N-
way synchronization model, when SG and WG are substituted for SCh and WCh, respectively.

Proposition 6: The six fairness definitions are feasible for the N-way communication model.
Proof idea: Analogous to the proof of Proposition 1. As an example, we consider a scheduler for
WG fairness. Given a distributed program P in this model, associate with each group of
processes that (syntactically) can all participate in some joint action (referred to as an
action group ) a distinct priority variable. In particular, for local actions the action group will
consist of the single process to which the action is local. The program section SELECTWG seen
in Figure 5 differs from the strong case given in Figure 2 for CSP in that the priority variable is
reset whenever the associated action group is not enabled. The priority variables associated with
single processes, which were defined because of local actions, ensure that the scheduler gen-
erates computations satisfying the Minimal Progress condition.

Also, a similar faithfulness theorem is provable, expressing the fact that all and only WG
fair computations are generated by this scheduler.

Proposition 7: Weak Communication and Weak Group fairness are equivalence robust for an
N-way communication model.

Proof: Using arguments similar to those in the proof of Proposition 2 we will show that WG is
equivalence robust. The proof for WCo is analogous. Consider a computation © which is WG
unfair. Then, from some point on an action group can continuously execute a joint action. Thus,
from some point on all processes in that group are never activated. If p is an equivalent computa-
tion, then by the projection equality lemma the same holds for p. By the same lemma, all
processes in the above-mentioned action group can continuously participate in that same joint
action. So, p is WG unfair as well. [J

for each action group do
if it is enabled then decrement its priority variable by 1
else reset the priority variable to an arbitrary nonnegative integer;
select an enabled action group with a minimal value for its priority variable;
reset the priority variable of the selected action group to an arbitrary nonnegative integer;
if a local action was selected then execute it '
else select and execute one of the enabled joint actions of the action group

Figure 5: SELECTWG
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Proposition 8: Strong Process, Strong Group, Strong Communication, and Weak Process fair-
ness are not equivalence robust for the N-way communication model.

Proof idea: In particular, unlike in the CSP model, Strong Process fairness is not equivalence
robust. To see this, consider the following program (Figure 6). Here joint actions (a, b, c) are
described by the set of participating processes and uninterpreted assignments (4, B, C), since the
example depends only on multiple synchronization and is independent of the content of the com-
munications. Subscripted occurrences of L denote local actions. Again, the example is indepen-
dent of the details of all these actions.

Consider the infinite computation of P which repeats the following cycle:
1) The action b is jointly executed by processes P, and P 5.
2) P 3 locally executes Ly ;.
3) P, locally executes L 5.
4) The action c is jointly executed by processes P4 and P 4.

P[P IIPylIP311P,]
where
a::(Pl,Pz,P4):A

b:: (Pz,P3):B

CZZ(P3,P4)ZC
and
Pyi*[a - L]

Pyi*la -Ly,
(16 = L,,]

Py *[b — Ly,
(e = Lj,)

Pyi*[a =Ly,

[lc &> L4l

Figure 6: A program with N-way communication
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5) P 3 locally executes Ly ;.
6) P 4 locally executes L 4 ,.

In this computation, P, is infinitely often enabled to participate in the joint action a (after
steps 3 and 6), but never does so. Thus, this computation is not Strong Process fair.

On the other hand, an equivalent computation in which the above steps are executed in the
order 1), followed by the cycle on 2), 4), 3), 5), 1), 6) is Strong Process fair, because action a
(and thus P,) is never enabled in it. Specifically, in order to execute the joint action a, the
processes Py, P, and P4 must all be jointly available. However, in no state in this computation
are both P, and P 4 available.

The desired effect is obtained here by delaying local actions, preventing process availabil-
ity and thereby disabling joint actions. Note that at least three participants in a joint action are
necessary to generate such an example, and thus the reasoning does not apply to the CSP model
with binary joint actions.

Proposition 9: Strong Communication, Strong Group, and Strong Process fairness are liveness
enhancing for an N-way communication model.

Proof: Since CSP programs are special cases of programs with N-way communications, by Pro-
position 4, the three methods above are liveness enhancing. [J

Proposition 10: Weak Communication, Weak Group, and Weak Process fairness are not live-
ness enhancing for the N-way communication model.

Proof idea: The argument is similar to the one in Proposition 5. In fact, it is enough to redefine
the notions of chunk and B-enabled for the N-way model, and the proof goes through. We omit
the details.

From the above results, it follows that none of the six definitions of fairness satisfy all three
of the criteria for this model. However, it should be realized that with other assumptions about
the model of computation, and other definitions of fairness, it is possible to satisfy all three cri-
teria. In fact, in [AF] a new notion of fairness called hyperfairness is proposed for an N-way
model, and this notion was specifically designed to be feasible, equivalence robust, and liveness
enhancing for the model.

5. Results for an Ada-like communication fragment

In this section we consider a generalization of the process queues from the Ada definition
to a fairness notion suggested in [PdR]. They show that the generalization has equivalent power



20

to the queueing strategy, but is less restrictive. We demonstrate that it is an acceptable notion of
faimess for the Ada model, according to all three criteria. The propositions and proofs have a
general structure analogous to the previous sections.

The sublanguage considered, ACF (Ada communication fragment), contains the essentials
of the tasking together with a minimal sequential structure within tasks. An ACF program con-
tains a fixed number of disjoint processes without any sharing of variables. Each process has a
number of declared entries. A process may execute assignment and use usual branching and
repetition constructs such as while or if-then. In addition, it may call an entry in another pro-
cess, using the syntax <process—name >.<entry—name >(<actual —parameter —list >). This
suspends execution of the calling process until a corresponding accept statement in the called
process has completed executing due to that call. The accept statement has the form
accept <entry —name >(<formal—parameter —list >) — <statement >. It can execute (by pass-
ing parameters, executing the statement, and passing back the out parameters) when it is reached
in the process containing it and a call from another process has been made with that
entry—name . There also is a select statement which has accept statements as nondeterministic
alternatives.

According to the operational semantics of ACF presented in [PdR], the joint actions are the
engagement in a rendezvous and the termination of a rendezvous, both involving parameter
copying. A computation is once again an interleaving of atomic actions. The local actions are
assumed to satisfy the minimal progress property mentioned before.

The fairness notion suggested in [PdR] for ACF is the following: a computation = is fair if
no process may wait forever on an entry-call to an entry e while infinitely many entry-calls for e
are accepted in w. This notion does not exactly fall into any of the categories of fairness previ-
ously mentioned. We refer to it as Entry fairness .

The main theorem in [PdR] states, that for programs which do not refer to attributes of the
explicit entry queues (present in the original Ada ), the class of fair computations coincides with
the class of admissible computations by the original queueing requirements of Ada.

The usage of the entry queues can serve as a scheduler for the entry-calls, where the queues
play a role analogous to the priority variables of the other schedulers. We immediately obtain
Proposition 11: Entry fairness is feasible for the ACF model.

In order to show the equivalence robustness, note that the above definition of fairness
relates only to processes which are waiting continuously on an entry-call. That is, the continuous
availability of the calling process p for a rendezvous is built into the definition. Thus the Uni-
form Choice assumption that local actions cannot be alternatives to communication actions (used
in Proposition 2 to establish the continuous availability of one side of a CSP communication) is
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not needed here.

Proposition 12: Entry fairness is equivalence robust for the ACF model.
The proof uses the same argument as that for SP fairness in Proposition 2, since the persistence
of entry-calls is now given.

Proposition 13: Entry fairness is liveness enhancing for the ACF model.

Proof: Consider the program given in Figure 7. Without fairness, the rendezvous between P and
P, need never occur, and the program will not terminate. With Entry fairness, termination is
guaranteed (z and then x will become false, and the second accept will only be possible with
P 4, causing w to also become false).

In passing, we note (as mentioned in [GdR]) that ACF already has
unbounded nondeterminism without additional fairness assumptions. Thus, merely exhibiting a

program that implements random assignments using fairness does not suffice to prove Proposi-
tion 13.

P::[Pl “P2”P3]
where
Pt Pye(false y).

Py x:=true;
while x do
accept e(in z,out v) — begin x:=z; v:=z end;

accept e (in z,out v) — v:=false.

Py::wi=true;

while w do P,.e(true ,w).

Figure 7: A fairly terminating Ada program
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6. Results for models with nonblocking send

In traditional message-passing models on a network, there are send and receive operations
for communication, but, unlike CSP, the send operation terminates independently of message
arrival. That is, it cannot be blocked and is a purely local action. A receive operation can then be
executed only if a “‘corresponding’’ send operation has been previously executed on the other
end of the appropriate channel, and in some sense (which needs to be precisely defined) the mes-
sage has ‘‘arrived’” at the process containing the receive . Again, we wish to abstract away from
an operational consideration of explicit queues of messages, and to consider fairness in terms of
the receive operations which must occur. For this reason, we will consider a message to be
available at a receiving process as soon as it has been sent. Since a process can ‘‘pause’’ arbi-
trarily long before executing a local operation, this is sufficient to represent possible delays in
the delivery of a message. Note that here a receive operation is treated as a joint action even
though only one process (directly) participates in it.

As an example, in the sequel we consider a language syntactically identical to CSP, but
with the send operation (P !e ) interpreted as nonblocking. In such a context, since send is a local
operation, it will not be used in guards as an alternative to receive operations (P?v) in order to
maintain the Uniform Choice assumption. A receive action is enabled if the process containing
it is at a control point where the action can be chosen for execution and moreover some match-
ing send operation has been executed and the message sent has not yet been received. As previ-
ously, a process is enabled in a state if it contains enabled receive operations in that state.
Three versions of fairness will be considered, analogous to the Process, Channel, or Communi-
cation fairness seen for other models, each in a Weak and a Strong version.

Process fairness is defined as in the other models we have considered: if the process is suf-

ficiently often enabled, then one of the receive actions in it (which are the only ‘‘joint’’ actions)
will be executed. On the other hand, it is reasonable to define a version of Channel fairness in
terms of the receive operations, to be called Receive fairness :
Each receive operation which is sufficiently often enabled, is infinitely often executed. This is
analogous to the Channel case because the enabledness condition means that a matching send
operation was executed earlier in the process identified by the receive, and that two processes
must therefore communicate.

Finally, a fairness called Message fairness is defined by: Each message which is suffi-
ciently often capable of being received, is indeed received. That is, if a receive operation is
enabled sufficiently often after a message has been sent by a matching send, that particular mes-
sage will eventually be the one received. This is analogous to Communication fairness because
an individual communication is considered.
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Since once it is sent, a message will not be retracted (and we are not considering faulty
message links), the only difference between the weak and the strong versions is the control loca-
tion of the receiving process. For Weak fairness, the desired action (executing a receive opera-
tion or receiving a particular message) must occur if the enabling condition is continuously true
from some point on and this is equivalent to being at a control point where a receive operation is
enabled, from some point on. For the Strong versions, it is sufficient for the enabling condition
to be true repeatedly (infinitely often).

In Table III the results of the appraisal for this model are summarized. As previously, the
justifications are found in the propositions below.

The locality of send as seen here is similar to the local nature of the call of the version of
Ada seen in the previous section, even though the call is blocking. In fact, a standard imple-
mentation of the message channels using queues can be used here also to show the feasibility of
all six of these definitions of fairness, just as was done for the abstraction of the Ada queues.
Proposition 14: The six notions of fairness defined above are feasible for the nonblocking send
model.

Proposition 15: All six notions of fairness defined above are equivalence robust for the non-
blocking send model.

Proof: We show that Strong Message fairness is equivalence robust. In order to do this, consider
a SM unfair computation ® and any equivalent computation p. By definition, © includes a send
action of some message, but not the corresponding receive action for that message, even though
corresponding receive actions are infinitely often enabled. By the Projection Equality lemma,
the send action will also eventually occur in p and from that moment on the enabledness in p of
all corresponding receive actions is only dependent on the control location of the process

feasible | equivalence robust | liveness enhancing
SP + + -
SR + + +
SM + + +
WP + + -
WR + + - —
WM + + -

Table III: Summary of appraisal for nonblocking send CSP
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containing them.

Again by the Projection Equality lemma, these receive actions will be infinitely often
enabled but none of them will be executed with this message. Thus p is also SM unfair.

An analogous argument holds for other fairness notions. All of them depend on the fact that
a send action will occur in all equivalent computations if it occurs in one and that the enabled-
ness of the corresponding receive action is only dependent on the control location of the process
containing the receive . Thus, there is no possibility of conspiracies. That is, we cannot produce a
computation equivalent to an unfair one, but which is made fair by preventing eventual enabled-
ness of actions which were enabled in the unfair computation. [

This result shows a connection between equivalence robustness and the degree of synchron-
ization in joint actions. At least for these definitions of fairness, when there is no synchroniza-
tion all are equivalence robust, when there is handshaking between two, three of six notions are
equivalence robust, and when there are N-way communications only two out of six are still

equivalence robust.

Proposition 16: Strong Receive and Strong Message fairness are liveness enhancing for the non-
blocking send model.

Proof: As in the programs of Figures 4 and 7, it is easy to design a program in this model in
which two processes exchange messages, while a single message sent to one of them from a
third process causes all three to terminate if it is ever received. The nonterminating computa-
tions, in which the message causing termination is simply ignored in favor of messages from
another process, are ruled out by either Strong Receive or Strong Message fairness. Since only
one message is sent from the third process, there is no difference between the two fairness
notions for this example. Under either type of fairness the program always terminates, and by
definition this shows liveness enhancement. O

Proposition 17: Strong Process, Weak Process, Weak Receive, and Weak Message fairness are
not liveness enhancing for the nonblocking send model.

Proof: As in previous proofs, it is most natural to consider an infinite unfair computation, and to
show that there must also be an infinite fair one. For the types of fairness given above, there is
no way to force the processes which are infinitely often activated in the unfair infinite computa-
tion to receive a message, even if other processes intermittently are made to receive or send mes-
sages. For all of the Weak forms, it is clear that the fairness notion only influences the selection
of a receive operation for processes which from some point on do no other operation. Strong
Process fairness also cannot affect the operation of the processes which are participating in the
infinite computation, because they are indeed executing receive operations, and any changes in
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the other processes are irrelevant. Unlike the CSP model, here Strong Process fairness is also
not liveness enhancing because in the nonblocking send model the sending of a message is a
local action not related to fairness, and a process with a matching receive (which might be parti-
cipating in an infinite computation) need not receive the message. For CSP, the demand that a
process participate in a joint action (for example, by sending a message) forced particular mes-
sages to be received by another process (the one with the matching receive). O

7. Conclusions

Specific instances of results similar to the ones here have been pointed out elsewhere, as
disturbing anomalies. The fact that Weak Process fairness is not equivalence robust for the CCS
model was indicated to us by Gerardo Costa. In [BK-S2] the lack of equivalence robustness for
a notion of fairness in the N-way communication model is noted (of course using different termi-
nology).

As seen in the consideration of liveness enhancement, one way to express the difference
between a model with a fairness assumption and one without is to consider the implications for
termination of programs. In [BK-S2] and in [GFK] the termination properties of various models
and fairness definitions are considered. Those works must deal with the problem that
equivalence robustness is not maintained by many of the models and fairness definitions. As a
solution, they suggest semantic assertions about the computations which are sufficient to guaran-
tee equivalence robustness for the subclass of programs which satisfy the assertions. For exam-
ple, in [GFK] an incomplete two-level proof system is suggested for the CSP model with Strong
Communication fairness. Rules are given which allow showing that for a particular program the
fairness definition does respect the equivalence classes of computations generated for that pro-
gram. Then, separately, it is shown that the program terminates for all the so-called serialized
computations. Unfortunately, the rules for the first part are complex, not easy to apply, and only
treat some obvious cases.

We have shown that for a variety of models and notions of fairness an alternative approach
is viable: to evaluate the fairness notions more carefully to find those which are feasible,
inherently equivalence robust, and yet liveness enhancing. By establishing once and for all that
a fairness definition is equivalence robust for a model, and furthermore is feasible and liveness
enhancing, it becomes possible to state simple proof rules for termination of programs. In other
words, we need not worry about possible "conspiracies” of some processes against others as was
seen in the program of Figure 6.

In general, the idea of defining criteria, and then systematically evaluating the potential
definitions of fairness for the computational model according to those criteria, clarifies the
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advantages and drawbacks of the alternatives, and should be useful in language design.

While working on these results, we have noted that yet another natural equivalence relation
among CSP -like programs, underlying the transformation to normal form of such programs
[ABC], is not respected by fairness. The original program and its normal form differ, for exam-
ple, w.r.t the restriction of a local action immediately following every communication. One can-
not employ some of the techniques we have used here, if communication need not be confined to
(top level) guard positions. It would be interesting to obtain characterization theorems, that for
each notion of fairness characterize the equivalences respecting that fairness, and vice versa, for
each equivalence relation, characterize the fairness notions respecting it.
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